
Automated CanOpen PDO mapping of IEC 61131-3

Directly Represented Variables

Edouard Tisserant, Laurent Bessard and Grégory Trélat, Lolitech

CiA DS-405 defines a way to publish variables of IEC 61131-3 programmables
CANOpen nodes through their Object Dictionary, using Dynamic Index Assignment
defined in DS-302. Correspondence between IEC 61131-3 variables and Object
Dictionary entries is let to the responsibility of the PLC manufacturer.

IEC 61131-3 defines some Directly Represented Variables, specifying direction, size,
and location of physical variables. In this representation, location is an arbitrary count
of integers separated by dots. Again, correspondence between location of IEC 61131-3
and physical variables is manufacturer-specified.

As a consequence, and despite of the standardization efforts of PLCopen and CiA,
there is still no real interchangeability of PLC nodes in a CANopen network.

This paper proposes a method for the PLC application writer to explicitly publish
and subscribe to CanOpen remote variables with Directly Represented Variables
location. As a complement to DS-405, it could suppress most network reconfiguration
steps when moving PLC programs from one brand to another.

Presented concepts and algorithms are already implemented in the Beremiz and
CanFestival open source projects, and are publicly available.

I. Introduction

Originally designed for carrying the
increasing amount of data exchanged in
modern cars, the CAN (Controller Area
Network) protocol is today adopted in a
wide range of automated manufacturing
environments. CAN only covers physical
and data link layer protocol, that's why
several application layers like DeviceNet
or CANopen have been developed in
order to standardize communication
between nodes from many manufacturers.
CANopen is certainly the most popular
embedded communication protocol and is
found in many economic sectors such as
medical, industrial machinery and military.
Since 1992, CANopen is maintained by
the Can in Automation (CiA) organization.
Thanks to CAN and other low level
protocols, CANopen reduces the amount
of wires used to connect Programmable
Logic Controller (PLC) to the devices it
controls in a machine.

During decades, PLC manufacturers
have provided proprietary tools and
programming languages. Due to long
learning times and incompatibility between

PLC brands, users where locked to one
PLC manufacturer and could generally not
afford to acquire skills for other tools. This
situation was globally negative for the
automation market, as it was hard to find
skilled control engineers for one specific
PLC manufacturer.

For this reason, the IEC (International
Electrotechnical Commission), an
international standards body, has
approved a collection of standards with the
intention of creating a common user
experience in programming industrial
controllers. One of the components of this
standard, namely the IEC 61131-3 [2],
defines how the user may program PLCs,
thanks to a programming framework and
several programming languages. Later,
TC6-XML work group of PLCopen [4]
association have released XML based file
format specification for IEC 61131-3,
subsequently letting PLC user exchange
programs across PLC brands.

Thanks to IEC 61131-3 and CANopen, it
is possible to build a fully functional PLC.
CiA DS-405 [3] profile has been written for
that purpose. Among other definitions
such as types and Service Data Object
(SDO) access function blocks, it defines a

way to publish variables of IEC 61131-3
programmables CANOpen nodes through
their Object Dictionary. It relies on
CiA DS-302 [6] for dynamic assignment of
variables in Object Dictionary and
CiA DS-306 [7] for configuration storage
file format (DCF, nodelist.cpj).

However, CANopen PLC user's primary
concern isn't about the organization of
variables inside the Object Dictionary. For
such devices, configuration process
generally consist in mapping IEC 61131-3
Directly Represented Variables to
CANopen process variables. This task is
generally long and subject to critical
errors, particularly while reconfiguring an
existing PLC. On user point of view,
organization of these variables in PLC
node's Object Dictionary is an intermediate
result.

Even if individual nodes configuration
can be exchanged between nodes from
different CANopen vendors through DCF
files and if PLC programs can be
exchanged with PLCopen's TC6 XML files,
there is no standardized scheme to
explicitly map IEC 61131-3 Directly
Represented variable to CANopen
process variables.

As a consequence, user willing to
replace a CANopen PLC with one from
another manufacturer still have to
manually reconfigure all the CANopen to
IEC 61131-3 variables mappings.

These reconfiguration steps could be
avoided by defining an IEC 61131-3
variable location to remote CANopen
variables mapping scheme. Using this
scheme, TC6-XML program file along with
node list file (nodelist.cpj) and associated
EDS and DCF files would be sufficient to
fully describe a PLC an the CANopen
network it controls. This files could
theoretically be exchanged between
CANopen PLC solutions independently of
their manufacturer.

II. IEC 61131-3 Overview

The IEC 61131 standard [2] is a general

framework, that tries to establish the rules

to which all PLCs should adhere to,

encompassing mechanical, electrical, and

logical aspects. The third part,

IEC 61131-3, deals with the programming

aspect of the industrial controllers, defining

logical programming blocks and

programming languages.

There are three variations of top level

programming blocks: functions, function

blocks, and programs. Functions have

similar semantics to those in traditional

functional languages, and directly return a

single output value.

Function block types are similar to

classes in object oriented languages, with

the limitation of having a single public

member function. Function blocks are

instantiated as variables, each with their

own copy of the function block state. Since

a function must be idem-potent, it can

neither instantiate nor call a function block

instance.

Program types are very similar to

function blocks, with the exception that

these may only be instantiated inside a

configuration, and not inside other

functions, function block types or program

types.

A configuration is the program

organization unit with the highest level. It

does not contain executable code, but

instantiates programs and/or function

blocks, creates and configures tasks, and

assigns the programs and/or function

blocks to tasks. Tasks are similar to

processes in operating systems, and may

execute periodically or upon the

occurrence of the rising edge of a

specified Boolean variable.

These blocks may be programmed with

textual languages such as IL (Instruction

List) and ST (Structured Text), or with

graphical languages such as LD (Ladder

Diagram), FBD (Function Block Diagram),

or SFC(Sequential Function Chart).

SFC specify state machines, and is

mostly based on Grafcet. Since a state

machine implies the maintenance of state,

SFCs may not be used to program

functions as they must be idem-potent.

III. Map CANopen as IEC 61131-3 locations

Directly represented variables is a
category of IEC 61131-3 variables that
allow specification of a physical or logical
location in declaration syntax.

These variables can be used directly in
programs or function blocks or declared as
global variables in configurations and
resources.

Directly represented variables syntax
states that all identities must start with the
percent character ('%') followed by one or
two letters and a sequence of numeric
fields separated by periods ('.').

The first and required letter defines the
location prefix. Three values are possible:

- 'I' for input locations,

- 'Q' for output locations

- 'M' for internal memory locations.

The second and optional letter defines
the size of memory block referenced by
directly represented variable. If the second
letter is omitted, memory block is
considered to be a single bit. There are 5
values available for this letter:

- 'X' for a bit

- 'B' for a byte (8 bits)

- 'W' for a word (16 bits)

- 'D' for a double word (32 bits)

- 'L' for a long word (64 bites)

The interpretation of the last part is left
to the manufacturer implementation.
However, the standard specifies that the
numeric fields shall be interpreted as a
hierarchical address with the leftmost field
representing the highest level of the
hierarchy. '%IW10.1.21' could then
represent a 16 bits input memory located
on rack 10, module 1, channel 21.

Following this requirement, the
CANOpen hierarchy can be represented
as follows:

Leftmost field, named 'Protocol ID', is
fixed to a value recommended for
CanOpen network, such as '503254', in
reference to EN 50325-4 standard.

A 'Bus ID' field is required to select the
bus among all CANopen buses connected
to PLC.

In case of remote variable access, two
fields are required to select the type of
transmission through the network, and ID
of remote node. Value should be
respectively based on PDO Transmission
Type and Node-ID values defined in
DS 301.

Location of the variable in the node
object dictionary is represented with two
fields, respectively index and subindex of
the designated entry.

An optional rightmost field can be used
to point individual bits, as soon as memory
size letter is specified to 'X'.

As an example, the variable to access
synchronously the first 8 bit read input
(index 6000h, subindex 01h) of a DS-401
[5] node with ID 10h, connected on the
first CANOpen bus, can be represented :

Another example, reading local
CANopen Error Register (1001h,00h):

IV. PLC variables in local object

dictionary

When representing local object
dictionary variables, directly represented
variables can also be used to implicitly
declare new entries in object dictionary. In
that case, with 'I' and 'Q' prefixes declares
reactively Write Only and Read Only
entries. 'M' prefixed variables declares
Read/Write entries.

Here is an example of an arbitrary
variable exported in manufacturer specific
object dictionary section (2001h, 0h).

Using implicit declaration to populate
object dictionary with PLC variables is
useful to program NMT slave PLC nodes,
that are not supposed to configure network
on start-up. In that case, the EDS file
included in PLC program compilation
results is passed to the CANopen
configuration tool.

V. Network configuration computation

When PLC node is NMT master, it must
adapt the configuration of remote nodes
according to PLC program needs.

This new network configuration can be
deduced from the list of directly
represented variables declared in PLC,
the list of connected Node-ID and
associated EDS files.

Hereafter is a description of a simplified
algorithm used to generate network
configuration out of these informations.
Transmission type is ignored.

Before any computation, unused COB-
IDs in the range of the standard PDO have
to be deduced from EDS and Node-ID
lists. COB-ID from this list will be affected
to each new generated PDO, until no one
left.

As described in Figure 1, directly
represented variables are filtered keeping
only those that are related to each
CANopen network the PLC is connected
to. At the same time, they are checked,
keeping only those that refers to an
existing node and where index and
subindex are valid for this node.

Figure 1: Variable filter diagram

Once variables filtered, we use EDS
default values to distinguish those that are
already mapped in some PDO and those
that aren't mapped by default. Each
transmitted or received default PDO that
map a requested variable is kept as this,
and marked as a PDO to be transmitted or
received by the PLC. Each undesired
object mapped in this PDO is mapped in a
special 'Trash' section of local object
dictionary.

Keeping as much as possible each node
PDO configuration to default values is
necessary in order to be able to deal with
nodes that do not support PDO mapping
changes. For optimisation purposes, this

feature should be optional. In that case,
default PDO are systematically
overwritten.

Figure 2: PDO mapping diagram

As shown in figure 2, remaining
unmapped variables have to be brought
together to form new PDO mappings. For
each new PDO, a COB-ID is chosen
among unused ones. These new PDO is
then marked as a PDO to be transmitted
or received by the PLC.

VI. Compatibility

As a consequence of PDO mappings,
each directly represented variables aimed
to access remote CANopen variables
correspond to a new created variable in
PLC Object Dictionary. CiA Draft Standard
DS-405 should be applied to organize
those variables in profile specific section.

Depending on respective PLC runtime
and CANopen protocol stack
implementations, directly represented
variables and Object Dictionary entries
may have to be periodically copied in one
or the other direction or instantiated in
shared memory.

Resulting network configuration may be
stored in master node with respect to the
DCF protocol defined in DS-302 [6]. For
each configured node a DCF entry is
generated and added to the network
manager node object dictionary (object
1F20h or 1F22h for concise format)

VII. IEC-61131-3 workbench integration

Available IEC-61131-3 integrated
development environments already
provide tools to pick CANopen network
variables and associate them to arbitrary
directly represented variables. Integrating
mapping scheme defined in this document
may simply consist in replacing the
incremental behaviour of variable location
attribution used in most CANopen variable
picker tool.

All occurrences of a variable have to be
renamed when its CANopen location
change. Similarly, some more advanced
substitution may occur in directly
represented variables location when the
Node-ID of a CANopen device is changed
in network description.

IEC-61131 defines that directly
represented variables locations numeric

fields are expressed in decimal form
instead of the hexadecimal form
commonly used in CiA specifications. This
can be disturbing for end users, who may
not immediately see correlation between
location and position in remote node
Object Dictionary. For this purpose, it is
preferable to let variable locations be
generated by a CANopen variable
selection tool, and eventually enhance
programming environment so that PLC
programmer could optionally edit those
numerical fields in hexadecimal form.
Many other ergonomic improvement can
be imagined to face the lack of readability
of decimal form.

VIII. Conclusion

Defining a scheme for direct

representation of CANopen variables in

IEC 61131-3 programs could bring real

interchangeability of PLC in CANopen

networks.

PLC programming workbenches that

already provide PLCopen TC6-XML import

and export filters, and also respect file

formats described in DS-405 and DS-306

may adopt such recommendations easily.

As a DS-405 compatible complement,

this scheme could eventually be used as

basis for possible DS-405 enhancements.

For more technical details on possible

implementation, please refer to the

CanFestival [8] and Beremiz [9] open

source projects, at the origin of those

concepts.

Edouard TISSERANT

TBI SARL - Lolitech

24 rue Pierre Evrat

88100 Saint-Dié des Vosges

FRANCE

Phone: (+33) 3 29 52 95 67

Fax: (+33) 3 29 58 93 16

E-mail: edouard.tisserant@lolitech.fr

Website: www.lolitech.net

Laurent BESSARD

TBI SARL - Lolitech

24 rue Pierre Evrat

88100 Saint-Dié des Vosges

FRANCE

Phone: (+33) 3 29 52 95 67

Fax: (+33) 3 29 58 93 16

E-mail: laurent.bessard@lolitech.fr

Website: www.lolitech.net

Grégory TRELAT

TBI SARL - Lolitech

24 rue Pierre Evrat

88100 Saint-Dié des Vosges

FRANCE

Phone: (+33) 3 29 52 95 67

Fax: (+33) 3 29 58 93 16

E-mail: gregory.trelat@lolitech.fr

Website: www.lolitech.net

References
[1] CiA DS 301, CANopen application layer and

communication profile
[2] IEC 61131-3, 2nd Ed. Programmable

Controllers � Programming Languages
[3] CiA DS 405, Interface and Device Profile for

IEC 61131-3 Programmable Devices
[4] PLCopen XML formats for IEC 61131-3.

http://www.plcopen.org/pages/tc6_xml/
[5] CiA DS-401, Device Profile for Generic I/O

Modules
[6] CiA DS-302, Framework for CANopen

Managers and Programmable CANopen
Devices

[7] CiA DS-306, Electronic data sheet
specification for CANopen

[8] CanFestival, an OpenSource CANOpen
framework. http://www.canfestival.org/

[9] Beremiz, an OpenSource framework for
automation based on IEC 61131-3 and
PLCopen. http://www.beremiz.org

